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Abstract
This study presents simulations of optimal field-free molecular alignment and rotational
population transfer (starting from the J = 0 rotational ground state of a diatomic molecule),
optimized by means of laser pulse shaping guided by evolutionary algorithms. Qualitatively
different solutions are obtained that optimize the alignment and population transfer efficiency
to the maximum extent that is possible given the existing constraints on the optimization due
to the finite bandwidth and energy of the laser pulse, the finite degrees of freedom in the laser
pulse shaping and the evolutionary algorithm employed. The effect of these constraints on the
optimization process is discussed at several levels, subject to theoretical as well as
experimental considerations. We show that optimized alignment yields can reach extremely
high values, even with severe constraints being present. The breadth of optimal controls is
assessed, and a correlation is found between the diversity of solutions and the difficulty of the
problem. In the pulse shapes that optimize dynamic alignment we observe a transition
between pulse sequences that maximize the initial population transfer from J = 0 to J = 2 and
pulse sequences that optimize the transfer to higher rotational levels.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years, studies of quantum dynamics in
atomic and molecular systems under the influence of (intense)
femtosecond laser light have increasingly moved from
observation of the systems to their control and manipulation.
As a result, a number of qualitatively different quantum
control schemes can presently be distinguished. Brumer
and Shapiro proposed the use of multi-colour interference to
control quantum systems [1]. Combinations of harmonic light
fields (typically (ω, 2ω) or (ω, 3ω)) can be used to control the
total and differential cross-sections of photo-ionization and
dissociation processes as well as, recently, the formation of
attosecond laser pulses [2]. Whereas the scheme of Brumer
and Shapiro emphasizes a frequency-domain description of the
quantum system, Tannor and Rice proposed quantum control
based on exploiting the time evolution of wave packets that
are produced when quantum systems interact with short laser
pulses [3]. By using a short pump pulse to prepare a wave
packet and a suitably chosen ‘dump’ pulse to steer the wave

packet towards a desired final state, processes such as retinal
isomerization of bacteriorhodopsin have been successfully
controlled [4]. As a special case of pump-dump control,
we may consider the highly successful STIRAP (STImulated
Rapid Adiabatic Passage) technique, where population transfer
is achieved with unit efficiency by means of a counter-
intuitive pump and dump pulse sequence [5]. Finally, Rabitz
introduced the concept of feedback control, where phase,
amplitude and/or polarization shaping under the influence of
a learning loop are used to guide a quantum system towards
a desired final state [6]. Many examples exist where this
technique has been successfully applied, ranging from the
control of chemical reactions [7], selective bond dissociation
and molecular rearrangement in the gas phase [8] to photo-
excitation of dye molecules in the liquid phase [9], and
from control of the energy flow in light harvesting [10] and
optimization of the coherent emission of high-harmonic soft
x-rays [11] to the energy deposition in high intensity laser–
cluster interactions [12].
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An important question in relation to quantum control is
whether or not the approach allows full control of the quantum
system at hand. A few years ago, Rabitz and co-workers
reported an analysis of the search landscape that is encountered
when feedback control is applied to a quantum mechanical
problem. They concluded that controllable quantum systems
with no constraints placed on the controls only have extrema
that correspond to perfect control or to no control at all
[13]. In other words, in a controllable quantum system,
when no constraints are placed on the time-dependent light
field that interacts with a system, feedback control will drive
the system towards the desired result with unit efficiency.
This is a remarkable conclusion, since it differs considerably
from the intuitive notion of feedback-control experiments as
an evolutionary walk through a mountainous landscape with
peaks of varying height, where a limited number of peaks
might correspond to the desired result and where a large
number of lesser peaks can act as traps where the optimization
may get stuck.

The difference between Rabitz’ ‘perfect’ result and
the notion that common feedback-control experiments may
suffer sub-optimal outcome is due to the fact that the
observable landscape of a controllable quantum system has
no traps. Attaining perfect control then requires that there
are no significant constraints on the applied field. Practical
realizations of feedback control will always be subject to
constraints, but whether that will limit attainment of perfect
control is generally not a priori evident. When feedback-
control experiments are performed in the laboratory, the
available laser pulses have a finite bandwidth and pulse energy,
and additional limits exist on the ability of pulse shapers to
introduce desired variations in the spectral amplitude, phase
and/or polarization of the frequency components in the laser
pulse [14, 15]. Furthermore, the search algorithm that is
employed in the feedback loop determines the exploration of
the search space and may introduce a bias that prevents the
exploration of crucial regions.

In this paper, we explore the influence of some constraints
on the outcome of experiments that are performed using
feedback control and explore to what extent the conclusions
of [13] are upheld when constraints prevent the system from
reaching its pre-defined goal. Quantum control objectives are
generally underposed with a given starting state and prescribed
final objective, but with no detailed guidance on the path
between these extremes. This situation suggests that multiple
functionally equivalent controls meeting the same objective
value should exist. This point has been argued formally [38]
and illustrated recently [39–41], with algorithms honed for
this purpose. To examine these matters further, we use a
computational approach, where constraints that are normally
encountered in the laboratory are incorporated in a computer
simulation. The quantum system is a rigid diatomic molecule
subjected to a linearly polarized laser pulse. We consider
two desired outcomes of the laser–molecule interaction: either
(a) alignment of the angular distribution of the molecule along
the laser polarization axis after the laser–molecule interaction
is over (field-free molecular alignment) [16] or (b) control
of rotational population transfer [17]. If the sample of

molecules is incoherently distributed over a set of states (e.g.,
a Boltzmann distribution) that are limited in their ability to
achieve a pre-defined goal, then the attainable final yield will
be limited as well. In line with our recently established
experimental capabilities [18] and in order to simplify the
present analysis, we assume that the sample of molecules is
initially in the J = 0 ground rotational state.

When molecules are exposed to an intense laser, they
tend to align their internuclear axis to the polarization axis
of the laser [19]. This effect, called dynamic alignment,
occurs because the potential energy of the oscillating dipole
induced by the laser is minimized when the molecule is
aligned. Dynamic alignment occurs in two variants, depending
on whether the duration of the laser pulse is long or short
compared to the rotational period of the molecule. In the
former case, the rotational states of the molecule adiabatically
adapt to the laser field, forming pendular states that are aligned
along the laser polarization axis [20, 21]. In the latter case, the
laser excites a rotational wave packet by impulsive stimulated
Raman scattering that leads to an alignment of the molecule
both during and at a particular time after the laser pulse. A
few years ago field-free alignment was demonstrated in pump-
probe experiments on I2, where the alignment induced by an
intense infrared alignment pulse was monitored by means of
Coulomb explosion imaging [16]. At well-defined times,
given by the rotational period of the molecule, alignment
revivals occurred where the angular width suddenly increases
or decreases during several picoseconds. This type of field-free
alignment is of interest for many applications in physics and
chemistry, recent examples being the use of field-free aligned
molecules in high-harmonic generation experiments aimed at
determining the electronic [22] and nuclear [23] structure of
molecules.

The degree of field-free alignment that can be
accomplished by a single laser pulse is limited by the
maximum intensity that a molecule can be subjected to before
competing processes such as ionization and fragmentation
take over. Quantum control methods provide an opportunity
to search for laser excitation fields that have a lower peak
intensity, while maintaining or even improving the degree of
alignment that is accomplished. Early work concerned with
optimizing the degree of field-free alignment suggested the
use of a sequence of laser pulses. As proposed theoretically
by Averbukh [24] and subsequently demonstrated numerically
by Averbukh and Rabitz [25], as well as experimentally by
Stapelfeldt and co-workers [26], field-free alignment can be
optimized by using a sequence of pulses where the inter-
pulse separation matches the rotational period (or a suitable
fraction thereof) of the molecule. This conclusion was also
reached in [27] where an evolutionary approach was applied to
the optimization of field-free alignment for finite-temperature
samples and where optimized pulse shapes consisting of trains
of up to five laser pulses were observed. Recent work on
the optimization of dynamic alignment using pulse shaping
by Pinkham et al [28], and by Hertz et al [29], explored the
possibility of optimizing alignment by means of chirp-induced
changes in the laser pulse shape without allowing the pulse to
break up into a train with a spacing comparable to the rotational
period.
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In dynamic alignment, the modification of the angular
distribution (usually expressed by means of the expectation
value 〈cos2 θ〉, where θ is the angle of the internuclear axis
with respect to the polarization axis) is largely determined by
the number of rotational states that contribute to the rotational
wave packet produced. Hence, optimizing dynamic alignment
leads to optimization of the Raman process that produces the
wave packet. A related, though different, goal is to request
that the optimization leads to transfer of all of the population
into a single rotational state. In this case, static field-free
alignment will be produced, and—when performed with a
sample containing only a single initial rotational state, as is the
case here—the laser preparation may serve to produce a state-
selected molecular sample. Optimization of the efficiency of
rotational population transfer by means of a sequence of two
pulses (without accomplishing unit efficiency in the transfer
of the population to a single state) was reported recently [17].
In the present paper, both dynamic alignment and population
transfer towards a selected rotational state will be considered.

2. Methodology

2.1. Calculating field-free alignment and rotational
population transfer

The computational methods for the calculation of time-
dependent molecular alignment and rotational population
transfer were previously described [30] and used in an
evolutionary optimization for a finite-temperature molecular
sample [27]. The evolution of the molecule in the laser field is
evaluated quantum mechanically by performing calculations
where the molecule is considered to consist of an electronic
ground state X and a (far off-resonant) excited state A.
In contrast with our previous work [27], we will only be
concerned with the time-dependent alignment of molecules
that initially occupy the J = m = 0 rotational state. Hence, the
wavefunction is expanded as

�(t) =
NROT∑
J=0

(αX,J (t)ψX,J + αA,J (t)ψA,J ) (1)

with NROT = 20 rotational levels, where ψX,J correspond to
the even Legendre polynomials and ψA,J correspond to the
odd Legendre polynomials. This expansion was confirmed to
give converged results in the present calculations. The time
dependence of the molecular wavefunction is given by

ih̄
d�(t)

dt
= H�(t) = {H0 + V (t)}�(t). (2)

The Hamiltonian consists of a molecular part H0 and the
interaction with the laser field V(t), given by

V (t) = �µ · �E(t) cos(ωt). (3)

The eigenvalues of H0 are E(J ) = BrotJ (J + 1), where
Brot = 5 cm−1 is the rotational constant of the molecule (the
revival time is Trev = 1/(2Brotc) = 3.3 ps). We note that
centrifugal distortion is not taken into account. The laser field
induces transitions between the rotational states via subsequent

Raman processes. The transitions between X and A proceed
via the selection rules �J = 1. Inserting equation (1) into
equation (2) and applying the rotating-wave approximation
(RWA) produces a set of differential equations which can be
efficiently solved by diagonalization of the Hamiltonian and
propagation in terms of the field-dressed eigenstates. We note
that calculations performed using this computational approach
on a strongly related problem have confirmed that under the
available conditions the rotating-wave approximation does not
influence the outcome of the calculation.

The envelope of the laser field (which governs the
dynamics in the rotating-wave approximation) is described
by

E(t) = Re
∫

A(ω) exp(iϕ(ω)) exp(iωt) dω. (4)

In the present calculation, the control is the phase function
ϕ(ω). This phase function is either obtained by defining the
phase at a set of N = 80 or 160 frequencies that are equally
distributed across the spectrum of the pulse or is written as a
superposition of the first NH = 40 Hermite polynomials, with
expansion coefficients that are optimized in the course of the
calculation. The spectral function A(ω) is a Gaussian with
a width chosen such that the FWHM length of the Fourier-
limited pulse (ϕ(ω) = 0) is 100 fs. Hence, the Fourier-
limited pulse duration is much shorter than the rotational
period. The intensity of the laser enters the calculation through
specification of the peak Rabi frequency �XA for the coupling
of the X and the A electronic states. The non-resonant detuning
of the A state is assumed to be 1015 s−1.

2.2. Optimization strategies

On the basis of earlier work on dynamic alignment starting
from finite-temperature samples [27] and due to previous
calculations that showed that certain variants of derandomized
evolution strategies perform better with respect to other
evolutionary algorithms on these problems [33–35], we restrict
our study to these state-of-the-art algorithms. There are two
simulations with different objectives: (a) the maximization of
the 〈cos2 θ〉-alignment that occurs after the laser pulse is over
(t > 12 ps) during the field-free evolution of the rotational
wave packet, subject to a penalty function that prevented
the electric field strength in the pulse from exceeding 0.6
of the transform limited value1 or (b) the maximization of
the population transfer towards a selected rotational level as
determined at the end of the laser–molecule interaction.

2.2.1. Evolution strategies (ES). Evolution strategies
[36] are canonical evolutionary algorithms for continuous
function optimization, due to their straightforward real-valued
encoding, their specific variation operators as well as due to
their high performance on benchmark problems compared to
other methods. A task becomes more suitable for an ES when
the dimensionality of the search space increases. In evolution
strategies, each individual carries, apart from the real-valued

1 In most of the results presented in this paper the presence of this penalty
function did not play a role.
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array of search parameters, a vector of strategy parameters,
which determines the mutation step size in each direction.
Both the search parameters, also referred to as object variables
or decision parameters, as well as the strategy parameters are
optimized.

2.2.2. Derandomized evolution strategies. Mutative step-
size control tends to work well for the adaptation of a global
step size, but tends to fail when it comes to the individual step
sizes (i.e., variances and covariances of the joint distribution).
This is due to several disruptive effects as well as due to the fact
that the selection of the strategy parameter settings is indirect
[37]. The so-called derandomized mutative step-size control
aims to handle those disruptive effects2. In our notation, a
(µ, λ) strategy refers to a population of µ parents, generating
λ offspring, out of which µ are selected based on their ranked
yield to become the parents of the following generation.

2.2.3. The (1, λ)-DR2 algorithm. The DR2 algorithm [38]
is considered to be the second generation of the derandomized
evolution strategies. This variant uses a linear number in the
search space dimensionality n of strategy parameters as a
strategy vector �δg

scal, and it aims to accumulate information
about the correlation or anti-correlation of past mutation
vectors in order to adapt the step-size δ:

�xg+1 = �xg + δg · �δg

scal · �Z (5)

where �Z is the mutation vector, i.e. an array of random
variables that are drawn from a normal distribution. In
each generation, the best solution generated by the mutation
operator is retained and becomes the seed for the next
generation, �xg .

2.2.4. The (µ, λ) covariance matrix adaptation (CMA-ES).
The (µ, λ)-CMA-ES algorithm [37] is known as the state-
of-the-art among the derandomized ES variants. It has been
successful for treating correlations among object variables,
where it applies principal component analysis (PCA) to the
selected mutations during the evolution for the adaptation of
the covariance matrix of the distribution, Cg ∈ �n×n:

�xg+1 = �xg + σg · Bg · Dg · �Z (6)

where the covariance matrix is eigenvalue-decomposed as

Cg = Bg · Dg · (Bg · Dg)T . (7)

Thus, it learns a full covariance matrix during the course of
evolution. We note that the number of strategy parameters in
CMA-ES is quadratic in n.

2 It is important to note that the particular variants of derandomized ES are
subject to different numbers of strategy parameters for adaptation, and this
affects the efficiency of the optimization: it is either of linear or quadratic
order in terms of the dimensionality of the search problem n, and there is a
trade-off between the number of strategy parameters and the time needed for
the adaptation/learning process of the step sizes. The choice is up to the user,
who should fit the strategy to the specific nature of the search problem.

(a)

(b)

Figure 1. (a) Comparison of an optimization performed using the
DR2 algorithm with �XA = 40 × 1012 s−1 and (b) four calculations
with �XA = 160 × 1012 s−1 employing the DR2 algorithm and the
CMA algorithm with either a simple (plain) point-by-point
specification of ϕ(ω) or a specification of ϕ(ω) as a superposition of
Hermite polynomials. The four calculations shown are the best
results out of 20 trials for each approach.

3. Optimization of dynamic alignment

3.1. Optimizations using a fixed laser pulse energy

Optimization of field-free molecular alignment starting from
J = 0 was performed for a number of algorithmic approaches.
In each case, the same calculation was attempted 20 times,
with different random values of the initial trial solution. Each
run was limited to 20 000 function evaluations. In this section,
the discussion is restricted to the best results obtained in each
series of 20 trials.

In figure 1 a comparison is shown between one
optimization of dynamic alignment starting from J = 0,
performed using the DR2 algorithm under perturbative
conditions (�XA = 40 × 1012 s−1) and four optimizations
performed under non-perturbative conditions (�XA = 160 ×
1012 s−1) using both the CMA and the DR2 algorithm, with
either a point-by-point definition of the phase function ϕ(ω)
(henceforth called a plain parameterization) or a definition of
ϕ(ω) in terms of a superposition of the first NH = 40 Hermite
polynomials. These values of the parameter settings gave
the best trade-off between field resolution and optimization
efficiency. Furthermore, based on past experience, we chose a
(1, 10) strategy for the DR2 algorithm. When using the CMA
method with the Hermite polynomials (NH = 40) we used a
(7, 15)-strategy, and using the CMA method with the point-
by-point definition of the phase (n = 80) an (8, 17)-strategy
was used.

At low laser intensity (�XA = 40 × 1012 s−1) the result
is simple. A pulse train is observed where the spacing
between the peaks is approximately the rotational period of a
coherent superposition state consisting of J = 0 and J = 2 only
(Trev,02 = 1/(6Brotc) = 1.1 ps). The time-dependent intensity
is given by a train of pulses where the largest pulse reaches
an intensity of 0.36 IFTL, where IFTL is the peak intensity of
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Table 1. Largest expectation value 〈cos2 θ〉 encountered in 20 trials
with the CMA and DR2 algorithms used in combination with
different parameterizations of ϕ(ω). The optimizations were
performed using a laser bandwidth corresponding to a 100 fs
Fourier-limited pulse and peak Rabi frequency of 160 × 1012 s−1.

CMA DR2

Plain 0.945 0.962
Hermite 0.961 0.957

the Fourier-limited pulse, due to the fact that the algorithm
has applied a penalty to pulses containing features with an
intensity larger than this value.

At high laser intensity (�XA = 160 × 1012 s−1), the pulse
shapes determined are considerably more complex and no
simple periodicity can be observed. The largest values of
〈cos2 θ〉 obtained are shown in table 1. The two cases with the
largest alignment are with the CMA algorithm in combination
with a parameterization utilizing Hermite polynomials or with
the DR2 algorithm using plain parameterization. Use of
the CMA algorithm with the plain parameterization or the
DR2 algorithm with the Hermite parameterization yields a
slightly lower value over 20 trials. Based on our experience
with the problem and the algorithms, the yield differences
of table 1 are believed to be significant. This is supported by
inspection of the pulse shapes shown in figure 1. The two most
successful optimizations (CMA/Hermite and DR2/Plain) not
only share their value of 〈cos2 θ〉, but furthermore make use
of a pulse shape that is very similar. While this does not
constitute a proof, we speculate that within the constraints in
the optimization (i.e., the finite pulse bandwidth and energy,
as well as the finite resolution of the phase function) both
algorithms have found a solution that approaches the best
solution that is possible. However, even if the solutions
are optimal within the constraints set by the laser bandwidth,
the laser pulse energy and the parameterization of the phase,
it is clear that the solutions do not approach the maximum
alignment that can be supported by the basis of 20 rotational
states (see equation (1)) that were used in the calculation.
The maximum alignment supported by this basis is the largest
eigenvalue of the observable matrix, which was found to be
0.9863. The corresponding eigenvector will be referred to here
as the maximal eigenvector or the maximal wave packet.

We ascribe the difference between this maximum value
and the values obtained in the optimizations as being largely
due to the finite laser bandwidth in our calculations. The
bandwidth and the pulse duration of a laser pulse with a
Gaussian shape are related by

�ωlaser,FWHM × τlaser,FWHM � 2πcB (8)

where cB = 0.441. For a pulse with a 100 fs Fourier-
limited duration, the bandwidth is �ωlaser,FWHM = 0.0182 eV =
147 cm−1. When a molecule undergoes a Raman transition
from J = J0 to J = J0 + 2, the energy absorbed from the laser
field is Brot(4J0 + 6). This absorbed energy is the difference
between the pump and dump photons involved in the Raman
excitation. Consequently, the Raman excitation becomes
frustrated when Brot(4J0 + 6) > �ωlaser,FWHM. In our case,

Figure 2. The distribution of the maximal and the best optimized
wave packets over the rotational states. Black stars represent the
maximal wave packet in the finite rotational basis (i.e.,
corresponding to the highest-ranked eigenvector of the observable
matrix). Blue diamonds represent the 1st optimized set of solutions
(CMA-Hermite/DR2-Plain) and red squares represent the 2nd
optimized set of solutions (CMA-Plain/DR2-Hermite); green
circles represent calculations with doubled bandwidth and the same
fluence (50 fs pulse with �XA = 226 × 1012 s−1), optimized by the
DR2 with plain parameterization. The figure clearly shows that the
limited field bandwidth cuts off the rotational states for the
optimized solutions after J = 10, when the original bandwidth is
used or after J = 12 when the bandwidth is doubled. Furthermore,
this plot illustrates the distinction between the two families of
solutions for the original bandwidth (i.e., blue diamonds and red
squares) arising from the different algorithms. Inset: the alignment
as a function of the overlap of the optimized wave packets |ψ〉 with
the maximal eigenvector |V 〉. Note that the overlap for the original
bandwidth never exceeds 0.8 in magnitude. Also note the three
clusters for the families of algorithmic solutions.

with a rotational constant of Brot = 5 cm−1, this threshold
occurs for J0 ≈ 6. As figure 2 shows, the rotational wave
packet that displays the largest alignment after the optimization
contains only limited contributions from J = 8 and J = 10,
and none from rotational levels above J = 10. By contrast, the
maximal wave packet that is supported by the rotational basis
used in the calculations contains contributions all the way up
to J = 18. In this respect, it may appear to be surprising
that a high yield of 0.962 can be obtained when the optimized
wave packet differs so much from the maximal wave packet. In
order to assess the crucial influence of the bandwidth constraint
on the cut-off of accessible J values, additional calculations
were performed with the original bandwidth doubled while
the fluence was kept fixed (thus corresponding to a 50 fs
pulse with �XA = 226 × 1012 s−1). These results are also
presented in figure 2 for comparison to the calculations with the
original bandwidth. The doubling of the bandwidth permitted
populating up to J = 12, and thus produced an enhanced
alignment yield of 0.975.

The difference between the maximally attainable wave
packet and that obtained by the optimization is also reflected
in the angular probability distribution functions pictured
in figure 3. These probability distribution functions are
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Figure 3. Left axis: normalized angular probability distribution
function for the maximal case |ψmax(θ)|2 sin(θ) and the optimized
control function |ψopt(θ)|2 sin(θ). Right axis: the value of cos2(θ).
The constraints prohibit the evolutionary algorithm from attaining
the absolute maximal angular probability distribution function;
however, the expectation value of the observable
〈cos2(θ)〉opt = 0.9621 when using the original bandwidth
corresponding to a 100 fs Fourier-limited pulse is within 0.025 of
the maximum attainable value 〈cos2(θ)〉max = 0.9863. When
doubling the bandwidth (i.e. basing the shaped laser pulse on a 50 fs
Fourier-limited pulse) 〈cos2(θ)〉opt increases to 0.975, which is only
0.0113 away from the maximum attainable value.

respectively constructed from the coefficients of the maximal
eigenvector as well as the state obtained from the optimized
field, based on equation (1). Even though at the higher
bandwidth the discrepancy between the optimally controlled
distribution function and the maximally attainable limit
appears to be significant, a high alignment value was still
obtained. The explanation for this excellent behaviour,
despite considerable differences in the composition of the
wavefunction, lies in the variational principle [42] which
states that a first-order error in a trial wavefunction (i.e., the
wave packet from the bandwidth limited optimal control field)
will produce an extremum eigenvalue (i.e., the alignment) of
second-order error.

When a molecule is exposed to a shaped, intense laser
pulse the optimization has to accomplish two things. First, the
optimization has to create a wave packet consisting of a large
number of rotational states that can serve to align the molecule.
Second, the optimization has to prepare the wave packet
with the correct phase relationship between the component
wavefunctions, so that during its field-free evolution these
components coherently add up to generate an optimally aligned
wavefunction. While there is no criterion available that
allows us to ascertain whether the algorithm has optimized
the population distribution, it is possible to investigate the
phase relationship of the component wavefunctions in the
optimized solutions. Maximum alignment occurs if at some
point in time the phases of all component wavefunctions differ
from each other by 0 (modulo 2π ). Separate inspection
of the wave packets that correspond to the pulses given in
figure 1 (but not visualized here) reveals that the algorithm
produces the wave packet with a relative RMS phase error
of only 0.0566 rad. While we cannot establish whether the
optimization has distributed the population in the best possible
way, we do observe that the algorithm has properly phased all
component wavefunctions with respect to each other. This

Figure 4. Observed alignment in an optimization employing the
DR2 algorithm and a plain parameterization of the phase function at
160 frequencies where the laser intensity was linearly varied during
the optimization process. After an initial learning stage, the
optimization produces a high degree of alignment and accomplishes
〈cos2 θ〉 = 0.962 when �XA reaches a value of 160 × 1012 s−1, very
similar to the results shown in figure 1 (square).

type of coherent alignment of phases was also observed to be
optimal in the mechanistic analysis of another state-to-state
control application [39].

3.2. Optimization of dynamic alignment starting from
J = 0 with a generation-dependent laser intensity

In order to observe, and possibly understand how the
optimal laser pulse shape evolves from the simple pulse train
observed for �XA = 40 × 1012 s−1 (figure 1(a)) into a much
more complicated pulse shape for �XA = 160 × 1012 s−1

(figure 1(b)), a series of calculations were performed where
�XA was increased linearly as a function of the generation
number. In these calculations, the molecule was initially
exposed to a shaped laser field with �XA = 40 × 1012 s−1,
and over 104 generations this value linearly increased to a
�XA = 180 × 1012 s−1. Figure 4 shows that after an initial
stage where the algorithm learned about the properties of the
search landscape, a smooth increase is observed in 〈cos2 θ〉 as
a function of intensity. Upon proper tuning of the optimization
(including switching to a search problem of 160 decision
parameters, rather than only 80) the best 〈cos2 θ〉 value from
figure 1 could be recovered: a 〈cos2 θ〉 value of 0.962 (i.e., the
value as in table 1, to three decimal places) was obtained when
�XA was equal to 160 × 1012 s−1.

In figure 5, the pulse shape that the algorithm employed
at �XA = 160 × 1012 s−1 is compared to the optimum pulse
shape previously shown in figure 1. Several conclusions can
be drawn from figure 5. While the value of 〈cos2 θ〉 is the same
for both calculations (as well as in further calculations using
this approach), the pulse shapes are very different. Evidently,
although the actual value of 〈cos2 θ〉 hardly differs, the pulse
shape that the algorithm finds is heavily influenced by the
way that the adaptation of the pulse intensity steered the
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Figure 5. Comparison of pulse shapes that were obtained in
optimizations employing the DR2 algorithm, when using a fixed
�XA = 160 × 1012 s−1 (bottom, see figure 1) or—at this same value
of �XA—in the course of an optimization where �XA was linearly
varied from 40×1012 s−1 to 180 × 1012 s−1 (see figure 4).

calculations through the search landscape. This behaviour
is consistent with formal analysis of control landscapes and
their level sets [13, 40, 41]. A control level set consists of
the family of control fields that produce the same value of the
observable.

Next, we explore how the solutions evolve when the
intensity is varied. Calculations were performed where the
intensity was first ramped from low-to-high (involving a
learning process as in figure 4), before reversing the process
and bringing the intensity back down. Since in the latter part of
the procedure the optimization starts from a converged result,
highly optimized solutions can be maintained throughout the
excursion, and the transition from high-to-low intensity can
be continuously observed. Figure 6 shows an example of
this procedure. A sequence of pulses are shown, starting
from the pulses (at low intensity) near the bottom, where the
learning process takes place, moving up to the centre of the
plot where the intensity is maximal, before reducing to a lower
intensity again for the pulses shown in the upper part of the
plot. These latter pulse shapes are a very simple pulse train,
with a pulse separation of 2.2 ps (i.e. 1/3Brotc). This pulse train
is very different from the pulse train in figure 1, where a pulse
separation of 1.1 ps was observed in the calculation where
�XA was constrained at a value of 40 × 1012 s−1 Nevertheless,
the alignment observed at the end of the optimization of
figure 6 reaches a value of 〈cos2 θ〉 = 0.548, which compares
rather well with the value of 0.550 found in figure 1. At these
low intensities, as previously observed at high intensity, vastly
different pulse shapes are able to produce similar optimized
values of 〈cos2 θ〉. These solutions are on a level set, but
the present calculations do not reveal if these solutions are
on connected (i.e., continuously morphable from one level set
to another) or disconnected components of the level set [42].

At low intensity the 1/(6Brotc) = 1.1 ps period observed
in figure 1 and the 1/(3Brotc) = 2.2 ps period observed in

Figure 6. Evolution in the normalized pulse shapes encountered in
an optimization employing the DR2 algorithm, where �XA was first
linearly varied from 40 × 1012 s−1 to 180 × 1012 s−1 and then back
down to 40 × 1012 s−1. A smooth evolution in the normalized pulse
shapes is observed, which at the end of the procedure leads to a
pulse at 40 × 1012 s−1 which is significantly different from the pulse
shown in figure 1, which was obtained in a calculation with a fixed
value of �XA.

figure 6 correspond to a laser interaction that occurs once
per period Trev,02 = 1/(6Brotc) = 1.1 ps of the J = (0, 2)
coherent superposition state (figure 1) or every 2nd period
(figure 6). This can clearly be seen in figure 7, where the
temporal behaviour is shown for the laser pulse shape and the
induced dynamic alignment for �XA = 54 × 1012 s−1, 110 ×
1012 s−1 and 166 × 1012 s−1 As the intensity is increased,
higher rotational states begin to contribute to the rotational
wave packet and the Trev = 1/(2Brotc) = 3.3 ps rotational
period begins to assert itself, as a consequence of the energy
differences between rotational levels J0 and J0 + 2 being
multiples of 2Brot for all values of J0. In the latter half of the
pulse (t > 0), additional narrowly spaced pulses come into play
that are spaced by Trev/4 = 1/(8Brotc) = 0.8 ps. The occurrence
of these new peaks comes at the expense of the peak at 2.2 ps,
which is considerably weakened in the calculation at �XA =
110 × 1012 s−1 (b) and completely absent in the calculation
at �XA = 166 × 1012 s−1 (c). In the latter calculation a new
peak has appeared at a delay of 3.3 ps, corresponding to the
full revival of the rotational wave packet formed. Hence, we
conclude that the optimum pulses observed in the simulations

7



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 074021 O M Shir et al

(a)

(b)

(c)

Figure 7. Intensity dependence of the alignment 〈cos2 θ〉 and the
laser pulse shape from an optimization where the laser intensity �XA

was first increased from 40 × 1012 s−1 to 160 × 1012 s−1, before
being tuned back down to 40 × 1012 s−1. The three calculations
shown were performed while �XA was decreased and correspond to
calculations where �XA was equal to (a) 54 × 1012 s−1, (b) 110 ×
1012 s−1 and (c) 166 × 1012 s−1, respectively.

arise as a result of an interplay between the temporal structure
that is required to optimize the transfer from J = 0 to J = 2,
leading to peak separations that are a multiple of 1/(6Brotc),
and the temporal structure that is required to optimize the
transfer from there to higher rotational levels, which leads to
peak separations that are multiples of 1/(8Brotc).

4. Optimization of rotational population transfer

Optimizations were also performed for population transfer
from J = 0 to J = 4. These optimizations were performed
using the DR2 algorithm and for three values of �XA

(80 × 1012 s−1, 120 × 1012 s−1 and 160 × 1012 s−1). All
calculations considered the plain parameterization only, and
were repeated 80 times, with 10 000 function evaluations
per run. Qualitatively different results were obtained for the
three intensities considered. For �XA = 80 × 1012 s−1 the
optimizations were unable to accomplish the transfer from
J = 0 to J = 4 with unit efficiency. The best efficiency
obtained was ∼32%. For �XA = 120 × 1012 s−1 and for
�XA = 160 × 1012 s−1 the transfer efficiency approached
100% in most of the calculations.

Figure 8. Population transfers from J = 0 to J = 4 obtained in 80
optimizations performed with the DR2 algorithm with �XA = 80 ×
1012 s−1 (top), along with the correlation coefficient between these
solutions, defined by equation (8) (bottom). The solutions that
perform best are highly correlated. Pixels in white correspond to
cross-correlation which (after rounding off) are equal to 1.

In order to be able to compare the results of individual
optimizations, we define a correlation coefficient that
compares the pulse shape used in two calculations i and
j as

Ci,j = Max(�tfi(t)fj (t + �t))/[
√

(�tfi(t)
2)

√
(�tfj (t)

2)]

(9)

where fi(t) and fj (t) are the field intensities of the pulses
obtained in calculations i and j, respectively, and where taking
the maximum as a function of �t reflects that the pulse shapes
determined by the optimization may be shifted with respect to
each other. The sums are over the discrete time steps in the
numerical calculation. According to equation (9) Ci,i = 1 and
Ci,j = 0 if pulses i and j do not overlap at all.

In figure 8, the correlation coefficient is plotted for the
80 optimizations that were performed for �XA = 80 ×
1012 s−1. The calculations are numbered according to the
success that was achieved in the optimization (see top panel
in the figure). From figure 8 we conclude that all solutions
that approach the maximum observed population are highly
correlated. An inspection of the calculations reveals that all of
these solutions are very close to a single Fourier-limited laser
pulse. Deviations from the Fourier-limited pulse not only lead
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Figure 9. Population transfers from J = 0 to J = 4 obtained in 80
optimizations performed with the DR2 algorithm with �XA = 120 ×
1012 s−1 (top), along with the correlation coefficient between these
solutions, as defined by equation (8) (bottom). The solutions that
perform well can be divided into a finite group of solutions that are
highly correlated within the group but not with solutions outside the
group. Pixels in white correspond to cross-correlation which (after
rounding off) are equal to 1.

to a drop in the correlation coefficient, but also in the efficiency
of the population transfer.

In figure 9, the correlation coefficient is plotted for the 80
optimizations that were performed for �XA = 120 × 1012 s−1.
In this case, the laser pulse energy is sufficient to transfer
population from J = 0 to J = 4 with near-unit efficiency. The
best solutions, which have a population transfer efficiency
of 99.982% and 99.98%, are only weakly correlated to each
other and are only weakly correlated to most of the other
solutions. Specifically, there are only 9 solutions among
the set of 80 that share a correlation coefficient larger than
0.95 with solution number 1. Of the remaining solutions,
many are strongly correlated with the 3rd-best solution to
have come out of the optimizations, which has a population
transfer efficiency of 99.975%: as many as 41 solutions share a
correlation coefficient larger than 0.95 with solution 3. While
the three good solutions 1, 2 and 3 are rather different from
each other, they contain most of the dominant features of
the identified optimized solutions. Solutions 1–3 are shown
in figure 10. Despite their difference, all three solutions in
figure 10 are dominated by a series of peaks with a separation

Figure 10. Comparison of the three best-performing pulse shapes
that were obtained in 80 optimizations of the J = 0 → J = 4
population transfer employing the DR2 algorithm with �XA =
120 × 1012 s−1. All solutions consist of trains of pulses with a
spacing of 4.79 × 10−13 s, which corresponds to the beating period
between J = 2 and J = 4.

Figure 11. Population transfers from J = 0 to J = 4 obtained in 80
optimizations performed with the DR2 algorithm with �XA = 160 ×
1012 s−1 (top), along with the correlation coefficient between these
solutions, as defined by equation (8) (bottom). Many near-perfect
solutions exist that are only weakly correlated to each other. Pixels
in white correspond to cross-correlation which (after rounding off)
are equal to 1.

9
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of 4.79 × 10−13 s. This corresponds to the beating period of
a coherent superposition of J = 2 and J = 4 (�E = 14B).
Additional good solutions likely exist, possibly continuously
connected on a common level set, and further special numerical
methods are needed to explore this possibility [40, 42].

In figure 11, the correlation coefficient is plotted for 80
optimizations that were performed for �XA = 160 × 1012 s−1.
While the degree of population transfer is very high in almost
all the optimizations at this intensity, the correlation between
the various solutions is very limited. Clearly, a large number
of solutions that transfer the population with unit efficiency
co-exist, with very little commonality between them. Indeed,
inspection of pulse shapes obtained in the optimizations at
�XA = 160 × 1012 s−1 reveals very complicated pulses, with
few regular features, and an absence of the peak arising from
coherence between J = 2 and J = 4 in the Fourier transform
power spectrum.

In summary, upon increasing the intensity from �XA =
80 × 1012 s−1 to �XA = 160 × 1012 s−1 we find that population
transfer is accomplished with an ever-increasing number of
distinguishable solutions.

5. Conclusions and outlook

In the last few years, optimal control experiments using
pulse shaping and a feedback loop governed by evolutionary
algorithms have become a popular endeavour pursued by a
rapidly increasing number of research groups worldwide. In
the course of these efforts, the nature of the optimization
process, the role of the pulse shaping device and the role
of the optimization algorithm continue to be a source of lively
discussion. The work here and elsewhere [39–41] shows that
it is possible to encounter a high diversity of optimal solutions
in constrained numerical simulations of quantum control and,
moreover, that the examination of such rich sets of solutions
can become an important aspect of the control experiments.
The diversity of successful controls likely contains useful
dynamical information and may also provide a list of choices
to consider for weighing in other ancillary control criteria.
The present calculations optimizing dynamic alignment and
rotational population transfer in a diatomic molecule exposed
to an intense, shaped laser field provide compelling evidence
that the absolute value of the quantity that is being optimized
(i.e., the ‘fitness’) is the true measure of success and that the
same value of the fitness may be achievable by widely differing
laser pulse shapes that share only a limited number of common
features. Furthermore, the results presented here can be
viewed as being the equivalent of the results reported by Rabitz
et al in [13], where it was proved that controllable quantum
systems with no constraints placed on the controls only have
extrema that correspond to perfect control or to no control
at all; additional analysis revealed the fundamental nature of
control level sets [40–42] at the absolute extrema and at sub-
optimal control yields. We also showed that the optimized
alignment yield attained a value which was very close to the
maximal possible yield in the current framework, even when
the constraints on the optimization translated into a significant
distortion of the resultant wave packet. By relaxing specific

constraints, we showed that it was possible to enhance the
observable alignment further towards the maximal attainable
alignment possible for the rotational basis set used. This
outcome leads to the optimistic conclusion that high yields
may be obtained, even when a priori it seems that the system is
subject to severe constraints for constructing the wave packet.
The origin of this behaviour can be understood in terms of
the variational principle as well as the physical observable
involving an integration over the wavefunction which hides
some of its discrepancies.

A striking aspect of the results is the evidence that the
number of independent solutions produced by an optimization
seems to critically depend on the difficulty of the problem. In
the population transfer calculations we observed that at low
intensity, where reaching the target is a hard problem with
less than perfect yield, the trials invariably converge onto one
and the same solution, whereas at higher intensity, where this
represents an easier problem, a wide variety of solutions are
encountered. Each of these solutions has the potential of
carrying valuable information about the underlying physics,
as we have observed in the case of optimization of field-free
molecular alignment, where some of the solutions provided
key information on the dynamics of the alignment process.
Viewed in this sense, the uniqueness of the fitness value, and
the diversity of the solutions that can lead to accomplishment,
are blessings in disguise.
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